Normal approximation for binomial distributions

• if X has the binomial distribution B(n, p), then

$$\mu_X = np$$
 and $\sigma_X = \sqrt{np(1-p)}$

• compare B(n,p) with the normal distribution that has this mean and standard deviation: $N(np,\sqrt{np(1-p)})$

Example:

For B(5, 0.2), have $\mu_X = 1$ and $\sigma_X = \sqrt{0.8} = 0.894$. N(1, 0.984) is not a good approximation of B(5, 2).

Example:

For B(100, 0.3), have $\mu_X = 30$ and $\sigma_X = \sqrt{6.3} = 2.51$. N(30, 2.51) is a good approximation of B(100, 0.3).

